
Improved Approximation Algorithms for

Unsplittable Flow on a Path with Time Windows?

Fabrizio Grandoni, Salvatore Ingala, and Sumedha Uniyal

IDSIA, University of Lugano, Switzerland
{fabrizio,salvatore,sumedha}@idsia.ch

Abstract. In the well-studied Unsplittable Flow on a Path problem
(UFP), we are given a path graph with edge capacities. Furthermore,
we are given a collection of n tasks, each one characterized by a subpath,
a weight, and a demand. Our goal is to select a maximum weight sub-
set of tasks so that the total demand of selected tasks using each edge
is upper bounded by the corresponding capacity. Chakaravarthy et al.
[ESA'14] studied a generalization of UFP, bagUFP, where tasks are par-
titioned into bags, and we can select at most one task per bag. Intuitively,
bags model jobs that can be executed at di�erent times (with di�erent
duration, weight, and demand). They gave a O(logn) approximation for
bagUFP. This is also the best known ratio in the case of uniform weights.
In this paper we achieve the following main results:

•We present an LP-based O(logn/ log logn) approximation for bagUFP.
We remark that, prior to our work, the best known integrality gap (for a
non-extended formulation) was O(logn) even in the special case of UFP
[Chekuri et al., APPROX'09].

•We present an LP-basedO(1) approximation for uniform-weight bagUFP.
This also generalizes the integrality gap bound for uniform-weight UFP
by Anagnostopoulos et al. [IPCO'13].

•We consider a relevant special case of bagUFP, twUFP, where tasks in a
bag model the possible ways in which we can schedule a job with a given
processing time within a given time window. We present a QPTAS for
twUFP with quasi-polynomial demands and under the Bounded Time-
Window Assumption, i.e. assuming that the time window size of each
job is within a constant factor from its processing time. This generalizes
the QPTAS for UFP by Bansal et al. [STOC'06].

1 Introduction

In the well-studied Unsplittable Flow on a Path problem (UFP) we are given a
path graph G = (V,E), V = {0, 1, . . . ,m}, with positive integer edge capacities
{ue}e∈E and a collection T of n tasks. Each task i ∈ T is associated with a
weight wi ∈ N+, a demand di ∈ N+, and a subpath Pi between nodes si and ti.
Let Te = {i ∈ T : e ∈ Pi} be the tasks containing edge e. Our goal is to select

? This work is partially supported by the ERC StG project NEWNET no. 279352.

a subset of tasks T ′ ⊆ T of maximum total weight w(T ′) :=
∑
i∈T ′ wi so that,

for each edge e, the total demand de(T
′) :=

∑
i∈T ′∩Te

di of selected tasks using
that edge is upper bounded by the corresponding capacity ue. Intuitively, edge
capacities model a given resource whose amount varies over a given time interval
(in a discrete fashion), and tasks demand for some amount of that resource. In
particular, the length of each subpath can be interpreted as a processing time.
By standard reductions [4, 8], we can assume thatm ≤ 2n and all edge capacities
are distinct.

UFP is strongly NP-hard [14]. Anagnostopoulos et al. [2] recently gave the
current best 2 + ε approximation for the problem1, improving on [5, 8]. This
matched a previously known [13] approximation for UFP under the No-Bottleneck
Assumption (NBA), i.e. assuming that the largest demand is upper bounded by
the smallest capacity. This matched also the best known approximation for the
uniform-capacity case [9].

The UFP with Bags problem (bagUFP) is the generalization of UFP where
tasks are partitioned into a set of h bags J = {B1, . . . ,Bh}, and we have the
extra constraint that at most one task per bag can be selected. Intuitively, bags
model jobs that we can execute at di�erent points of time (and at each such
time one has a di�erent demand, weight, and processing time). This problem is
APX-hard even in the case of unit demands and capacities [16]. Chakaravarthy
et al. [10] recently gave the current best O(log n) approximation for bagUFP.
The approximation factor remains the same in the case of uniform weights. The
same authors also presented a O(1) approximation under NBA.

1.1 Our Contribution.

In this paper we present an improved approximation for bagUFP (see Section 3).
In the special case of uniform weights, we can reduce the approximation factor
down to a constant (see Section 4).

Theorem 1. There is an expected O(log n/ log log n) approximation for bagUFP.

Theorem 2. There is an O(1) approximation for uniform-weight bagUFP.

Both our results are LP-based, and exploit a re�ned LP for bagUFP which is
inspired by the work on UFP in [1, 8]. In more detail, let us de�ne a task large if
it uses more than one half of the capacity of some edge along its subpath, and let
Tlarge be the large tasks. Bonsma et al. [8] introduced a geometric interpretation
of large tasks. They associate to each i ∈ Tlarge an axis-parallel rectangle Ri in
the 2D plane with top-left corner (si, bi) and bottom-right corner (ti, bi − di),
where bi = mine∈Pi{ue} is the bottleneck capacity of task i. We call this set
of rectangles R the top-drawn representation of Tlarge. In [8, Lemma 13] it is
shown that in any feasible UFP (hence bagUFP) solution at most 4 correspond-
ing rectangles can overlap at a given point (intuitively, those large tasks induce

1 Unless di�erently stated, ε denotes an arbitrarily small positive constant parameter.
Where needed, we also assume that 1/ε is integral and su�ciently large.

2

an almost independent set of rectangles). This insight was later used by Anag-
nostopoulos et al. [1]. Consider the grid induced by the horizontal and vertical
lines containing the rectangle sides. Let P be the set of (representative) O(n2)
middle points of the (positive area) cells of this grid. Note that any subset of
rectangles that share a positive size area, will overlap on some point in P. The
authors consider the following (non-extended2) LP relaxation for UFP:

max
∑
i∈T wixi (LPUFP+)

s.t.
∑
i:e∈Pi

dixi ≤ ue ∀ e ∈ E (1)
∑
i∈Tlarge:p∈Ri

xi ≤ 4 ∀ p ∈ P (2)

xi ≥ 0 ∀ i ∈ T

We call the constraints of type (1) and (2) capacity and rectangle constraints,
respectively. The authors show that this relaxation has O(1) integrality gap in
the case of uniform weights. Note that one can preprocess the instance so that
the weights range between 1 and O(n/ε) while losing a factor 1+ε in the approx-
imation. By partitioning tasks in O(log(n/ε)) classes of almost uniform weight,
one obtains that LPUFP+ has O(log n) integrality gap for general weights3.

In this paper we consider the LP relaxation LPbagUFP+ for bagUFP which
is obtained from LPUFP+ by adding the following bag constraints:

∑
i∈Bj

xi ≤ 1 ∀Bj ∈ J.

The standard LP relaxation LPbagUFP for bagUFP is obtained from bagUFP+

by removing the rectangle constraints. We show that LPbagUFP+ has constant
integrality gap in the uniform weight case, and integrality gap O(log n/ log log n)
in the general case. In particular, for the uniform-weight case we can adapt the
analysis in [1], while for the general case we can generalize the rounding proce-
dure of Chan and Har-Peled [11] for the maximum independent set of rectangles
problem. Note that the latter result slightly improves the best integrality gap
even in the case of UFP (for a compact, non-extended LP relaxation).

We also study a relevant special case of bagUFP (and generalization of UFP),
that we name UFP with Time Windows (twUFP). Here we are given a capaci-
tated path graph and a collection of jobs, where each job j is characterized by
a weight, a demand, a (positive, integer) processing time τj and a time window
Wj (i.e. a subpath between given nodes sj and tj). For each possible node σi
(starting time) so that sj ≤ σi ≤ tj− τj , we de�ne a task i with the same weight
and demand as j, and whose subpath Pi has endpoint si = σi and ti = σi + τi.
The tasks corresponding to the same job j de�ne a bag Bj . Intuitively, tasks
in Bj describe the possible ways in which we can process job j within its time
window. Our goal is to compute a maximum weight solution for the resulting

2 By non-extended we mean that it contains only decision variables for tasks. In the
same paper the authors present an extended formulation with O(1) integrality gap.

3 The same gap is proved by Chekuri et al. [12]. The authors claim a O(log2 n) gap,
and then re�ne it to O(logn) in an unpublished manuscript.

3

bagUFP instance. We believe that in practice several instances of bagUFP are
indeed instances of twUFP. The best-known approximation for twUFP is also
O(log n), where n is the number of tasks (O(log n/ log log n) considering The-
orem 1). In particular, the approach in [10] does not seem to bene�t from the
special structure of twUFP, nor does the approach from Theorem 1.

We present a QPTAS4 for twUFP under the following Bounded Time-Window
Assumption (BTWA): for any job j, (tj − sj)/τj ≤ C = O(1) (in words, the ra-
tio between the time window size and the processing time is bounded by some
constant). Our result generalizes the QPTAS for UFP by Bansal et al. [4]. Here,
similarly to [4], we assume5 that demands are quasi-polynomially bounded in n.

Theorem 3. There is a QPTAS for twUFP under BTWA and assuming that
demands are quasi-polynomially bounded in n.

Indeed, our QPTAS generalizes to the special case of bagUFP where tasks in the
same bag have the same demand and weight (under the natural generalization
of BTWA, that is, under the assumption that the processing time of any task i
contained in bag Bj is at most a constant factor shorter than the length of the
bag maxi∈Bj

ti−mini∈Bj
si). Note that bagUFP is APX-hard, therefore there is

not much hope for a PTAS for it. In contrast, our result provides an evidence
that twUFP might be an easier problem, at least under BTWA. It is unclear to
us whether the general case of twUFP is as hard to approximate as bagUFP.

In order to understand our contribution, it is convenient to sketch how the
QPTAS for UFP in [4] works. Let us consider the tasks OPTmid in the optimum
solution OPT that use the middle edge emid. The authors show how to de�ne a
capacity pro�le umid, dominated by the demand of OPTmid, which has a quasi-
polynomial number of steps, and such that there is a feasible solution APXmid

for capacities umid of cost close to OPTmid and which can be computed in QPT.
Thus one can guess umid, compute APXmid, and branch on a left and right
subproblem (where capacities are decreased by umid, and we consider only tasks
fully contained to the left/right of emid).

This approach does not work for twUFP since a time window might be split
by emid. In that case the left and right subproblems are not independent any
more (in particular, we cannot select two tasks from the same bag, one from the
left subproblem and the other from the right one). To circumvent this problem,
we exploit the randomized dissection technique by Grandoni and Rothvoÿ for the
related Highway problem [15]. We evenly split the path into a random constant
number of intervals, and iterate the process on each such interval. With prob-
ability close to one, the time window of each job j is fully contained in some
interval I of the dissection, and at the same time none of its tasks Bj is fully

4 We recall that a Quasi-Polynomial-Time Approximation Scheme (QPTAS) is an
algorithm that, given a constant parameter ε > 0, computes a 1 + ε approximation
in Quasi-Polynomial Time (QPT), i.e. in time 2poly log(s) where s is the input size.

5 We remark that Batra et al. [7] recently managed to remove this assumption on
the demands for UFP. Their approach does not seem to be compatible with our
randomized dissection technique (at least not trivially).

4

contained in a subinterval of I (here we need the BTWA). Thus we can de�ne a
capacity reservation that combines a constant number of capacity pro�les, and
use a proper algorithm (rather di�erent from [4], due to bag constraints) to com-
pute a good approximation for the considered jobs. We can then branch on the
subproblems induced by the subintervals.

Some proofs are given in the appendix due to lack of space.

2 A QPTAS for the Bounded Time-Window Case

In this section we present a QPTAS for twUFP under BTWA, and assuming
that the largest demand Dmax is quasi-polynomially bounded in the number of
tasks n. By standard tricks, while losing only a factor 1+ε in the approximation
factor, we can assume that weights range between 1 and O(n/ε).

A capacity reservation r is simply a collection of edge capacities {re}e∈E with
re ≤ ue for all edges e. A solution is feasible w.r.t. r if it respects the capacity
constraints induced by r. We say that r has k-steps if, scanning edges from left to
right, the value of their capacity changes at most k times. For another capacity
reservation r′, we say that r dominates r′ if re ≥ r′e for each edge e. For a set
of tasks S, we say that r is dominated by the demand of S if re ≤

∑
i∈S : e∈Pi

di
for each edge e.

The following technical lemma is similar in spirit to results in [4] (see Figure 1
for more intuition).

Lemma 1. Let S be a collection of at least 2/ε3 tasks using a given edge e, and
with demand in [D, (1 + ε)D) and weight in [W, (1 + ε)W). Then there exists a
capacity reservation r and a set of tasks R ⊆ S such that: (1) r is dominated by
the demand of S; (2) r has O(1/ε2) steps and its entries are integer multiples
of (1+ ε)D; (3) R is feasible for r, even if the paths of its tasks are expanded to
the left/right to reach the closest edge before a change of capacity in r and their
demand is increased to (1 + ε)D; (4) w(R) ≥ (1−O(ε))w(S).

Next lemma will be used to partition the input problem into a quasi-polynomial
number of subproblems. For a given set of edges F , let JF be the set of jobs j
such that each task in Bj contains some edge in F , and let TF = ∪j∈JFBj . Note
that containing an edge in F is not su�cient for a task i to be in TF . We de�ne
TF̄ = T \ TF .

Lemma 2. Consider a twUFP instance with optimal solution OPT , and let F
be a subset of O(1) edges. There exists a QPT algorithm that generates a set UF
of capacity reservations rF , and a feasible solution APXF ⊆ TF for each such rF
such that, for at least one such pair {r∗, APX∗}, APX := (OPT ∩TF̄)∪APX∗
is a feasible twUFP solution and w(APX) ≥ (1−O(ε))w(OPT).

Proof. Let OPTF := OPT ∩ TF and OPTF̄ := OPT ∩ TF̄ . We �rst show how
to construct a capacity reservation r∗ which is dominated by the demand of
OPTF . Let T

f,a,b be the class of tasks i ∈ TF with di ∈ [(1+ε)a, (1+ε)a+1) and
wi ∈ [(1+ε)b, (1+ε)b+1) for a, b ∈ N, and such that f is the leftmost edge in Pi∩

5

F . Observe that there are Oε(log n logDmax) (non-empty) such classes. De�ne
OPT f,a,b := OPT ∩ T f,a,b. Suppose that |OPT f,a,b| ≥ 2/ε3. Then we apply
Lemma 1 with S = OPT f,a,b and e = f , hence obtaining a capacity reservation
rf,a,b and a solution Rf,a,b. Otherwise, we simply let Rf,a,b = OPT f,a,b and
rf,a,b be the total demand of Rf,a,b. Let r∗ =

∑
f,a,b r

f,a,b. Observe that r∗

has Oε(|F | log n logDmax) steps, and each entry of r∗ is obtained from the total
demand of O(|F |/ε3) tasks plus an integer multiple of (1+ε)a+1 for Oε(logDmax)
possible values of a. Therefore in QPT we can enumerate a set UF of capacity
reservations that includes r∗.

Our algorithm constructs (in QPT) a feasible solution for each capacity reser-
vation in UF . For the sake of simplicity, we next focus on the solution APX∗

corresponding to the reservation r∗ described before. Note that, since r∗ is dom-
inated by the demand of OPTF , APX

∗ ∪ OPTF̄ has to satisfy the capacity
constraints. Furthermore, the bags of tasks in OPTF̄ are disjoint from the bags
of tasks in TF by de�nition (hence also bag constraints are satis�ed). We will
later show that w(APX∗) ≥ (1−O(ε))w(OPTF). The claim follows.

Let us focus on a given pair (a, b). We guess6 the set F a,bfew of all the edges

f ∈ F such that |OPT f,a,b| < 2/ε3, and the corresponding tasks APXf,a,b :=
OPT f,a,b = Rf,a,b with demand rf,a,b. The corresponding jobs are removed from
the instance. Let F a,bmany := F \ F a,bfew. For any f ∈ F a,bmany, we guess the capacity

reservation rf,a,b.7 Note that this reservation has O(1/ε2) steps, and its entries
are integer multiples of (1+ε)D, D = (1+ε)a. We expand all the tasks in T f,a,b

to the left/right till the closest edge before a change in the capacity of rf,a,b and
increase their demand to (1 + ε)D.

Next we consider the bagUFP instance induced by rounded tasks T a,bmany :=

∪f∈Fa,b
many

T f,a,b, with edge capacities given by ra,bmany :=
∑
f∈Fa,b

many
rf,a,b. Observe

that all the tasks of a remaining job are considered in the same such instance8.
We also remark that Ra,bmany := ∪f∈Fa,b

many
Rf,a,b is a feasible solution to this

bagUFP instance by construction. We also remark that ra,bmany has O(|F |/ε2)
steps, hence by contracting edges one obtains an equivalent bagUFP instance
with a constant number of edges.

We next show how to compute the optimal solution APXa,b
many for this

bagUFP instance via dynamic programming. Let us sort the considered ha,bmany
jobs arbitrarily. In our dynamic program we have a table entry (h′, r′) for each
h′ = 1, . . . , ha,bmany and for each feasible capacity reservation r′ dominated by

ra,bmany and whose capacities are non-negative integer multiples of (1+ ε)D. Note
that there is a polynomial number of table entries. The value DP (h′, r′) of this
entry will be set to the maximum weight of a feasible bagUFP for r′ using tasks
from the �rst h′ jobs only. Table entries are �lled in for increasing values of h′.

6 Throughout this paper, by guessing we mean trying all the possibilities.
7 In the guessing we of course guarantee that r∗ =

∑
f,a,b r

f,a,b.
8 Here we exploit a property of twUFP not satis�ed by bagUFP.

6

It is easy to compute the values DP (1, r′) (base case). For any h′ > 1, one has9

DP (h′, r′) = max{DP (h′ − 1, r′),max
i∈Bj

{wj +DP (h′ − 1, r′i)}},

where r′i is obtained from r′ by subtracting the demand of task i. The desired
solution APXa,b

many is the one corresponding to DP (ha,bmany, r
a,b
many).

Our global solution is APX∗ = ∪a,b(APXa,b
many ∪ (∪f∈Fa,b

few
APXf,a,b)), with

w(APX∗) =
∑
a,b,f∈Fa,b

few
w(OPT f,a,b) +

∑
a,b w(APX

a,b
many)

≥
∑
a,b,f∈Fa,b

few
w(OPT f,a,b) +

∑
a,b,f∈Fa,b

many
w(Rf,a,b)

Lem.1
≥

∑
a,b,f∈Fa,b

few
w(OPT f,a,b) +

∑
a,b,f∈Fa,b

many
(1−O(ε))w(OPT f,a,b)

≥ (1−O(ε))w(OPTF).

ut

We are now ready to describe the global algorithm, which is inspired by [15].
We �rst embed G into a longer random path G′ as follows. Let γ = (1/ε′)1/ε

′
,

where 1/ε′ = d1/min{ε, 1/C})e (in particular, ε′ ≤ min{ε, 1/C}). Let m be the
number of edges in the input graph. By adding dummy edges, we can assume
that m = γ` for some integer `. We choose integers x ∈ {1, . . . ,m} and y ∈
{1, . . . , 1/ε′} uniformly at random. Next we append x dummy edges to the left
of the path and m · ((1/ε′)y− 1)−x dummy edges to its right. All dummy edges
have capacity one. Let G′ be the resulting path graph, with m′ = γ`(1/ε′)y

edges. We remark that this step can be easily derandomized by considering all
the possible values for x and y.

We next consider the following recursive dissection of G′. We split G′ into
γ intervals of equal length (in terms of number of edges). Each such interval is
subdivided recursively in the same way, and we halt when we reach intervals of
length γ or less. We let I1, . . . , Iγ denote the (direct) subintervals of interval I. We
remark that intervals at level q ≥ 0 in this dissection have length αq := m′/γq.

We say that a job j is at level `(j) in this dissection if its time window Wj

is fully contained in an interval I(j) of level `(j), but not of level `(j) + 1. We
similarly de�ne `(i) and I(i) for a task i. For a given interval I, let J(I) be
the jobs whose time window if fully contained in I, but not in any one of its
subintervals. Among them, we call good the jobs Gd(I) such that all their tasks
i have I(i) = I(j) (i.e., they are not fully contained in a subinterval of I), and
bad the remaining jobs Bd(I)10 (see Figure 2 for more intuition). We discard
from the instance all the bad jobs Bd := ∪IBd(I).

Then we apply the following recursive algorithm, that takes as input one
such interval I and a residual capacity u′ coming from earlier calls. In the root

9 Intuitively, the �rst term in the outer max corresponds to the case that the best
solution does not use job k, and the second term to the weight obtained by including
some task i ∈ Bk in the solution.

10 We call good the jobs of level ` by de�nition.

7

call we use I = G′ and u′ = u. Let F (I) be the set of rightmost edges of the
subintervals of I. We consider the twUFP instance induced by (I, u′) with jobs
j such that Wj ⊆ I (excluding the discarded bad jobs Bd(I)), and we apply to
this instance Lemma 2 with F = F (I). We remark that the tasks TF in this case
are precisely the tasks of good jobs Gd(I).

This generates a quasi-polynomial size set of pairs {r(I), APX(I)}. For each
such pair {r(I), APX(I)} the algorithm branches by solving recursively each
subproblem induced by each subinterval Ii, with capacity reservation u′i induced
by u′− r(I): let APX(Ii) be the resulting solution. The output of this recursive
call is the maximum weight solution among the solutions of type APX(I) ∪
(∪iAPX(Ii)). The base case is given by intervals I of length at most γ. A
QPTAS for this instance is provided by Lemma 2: just choose F to be all the
edges in I.

It is not hard to see that the above recursive algorithm is QPT. Furthermore,
it outputs a 1 − O(ε) approximation of the optimal solution, restricted to the
subset of good jobs Gd := ∪IGd(I). Next lemma shows that each given job is
bad with su�ciently small probability. Theorem 3 follows.

Lemma 3. Each job is good with probability at least 1− 3ε.

Proof. Let us upper bound the probability that a job j is bad. We next assume
that `(j) < `, otherwise j is deterministically good by de�nition and there is
nothing to show.

We say that j is risky if there exists q such that ε′αq ≤ tj − sj ≤ 1
ε′αq.

We next bound the probability that j is risky. Consider a log-scale axis and
call segment the distance corresponding to a multiplicative factor of 1/ε′. The
regions of risky time-window lengths correspond to 2 segments for each value of
q, separated by 1/ε′−2 segments which are not risky. By the random choice of y,
the risky regions are shifted randomly w.r.t. the time-window lengths. Therefore
each job is risky with probability at most 2/(1/ε′) = 2ε′ ≤ 2ε.

Let us next condition on the event that job j is not risky. Then there exists
a q such that 1

ε′αq < tj − sj < ε′αq−1. If `(j) = q − 1, then j is good: indeed,
τj ≥ (tj − sj)/C ≥ ε′(tj − sj) > αq. Thus each path Pi, i ∈ Bj , is strictly longer
than the level q subintervals of I(j).

Due to the random choice of x, the endpoints of the intervals of level q − 1
are randomly shifted w.r.t the time window Wj , and `(j) < q − 1 only if Wj

crosses some interval of level q− 1. Therefore Pr[`(j) < q− 1] ≤ tj−sj
αq−1

≤ ε′ ≤ ε.
Altogether, job j is bad with probability at most 3ε.

Remark 1. The above QPTAS extends to the special case of bagUFP where tasks
in the same bag have the same demand and weight (under the natural analogue of
BTWA). In particular, it is su�cient to adapt the DP from Lemma 2. However,
it does not seem to extend to the case that weights and demands are arbitrary
(since in that case the same bag might in�uence di�erent capacity pro�les ra,bmany,
which therefore cannot be considered separately in the DP).

8

3 An Improved Approximation for bagUFP

In the Maximum Independent Set of Rectangles problem (MISR) we are given a
collection R = {R1, . . . , Rn} of axis-parallel rectangles in the 2D plane, where
Ri has weight wi. Our goal is to �nd a maximum total weight subset of rectan-
gles which are pairwise non-overlapping11. We de�ne bagMISR as the natural
generalization of MISR with bags J = {B1, . . . ,Bh}.

We �rst present a O(log n/ log log n) approximation for bagMISR, and then
show how to use it to achieve the same approximation factor for bagUFP.

Approximating bagMISR. Let P be the set of O(n2) representative points
for rectangles R obtained with the already mentioned construction. Consider
the following natural LP relaxation for bagMISR:

max
∑
Ri∈R wiyi (LPbagMISR)

s.t.
∑
Ri∈R:p∈Ri

yi ≤ 1 ∀ p ∈ P
∑
Ri∈Bj

yi ≤ 1 ∀Bj ∈ J

yi ≥ 0 ∀Ri ∈ R

The standard LP relaxation LPMISR for MISR is obtained from the above LP
by removing the bag constraints. Let B(Ri) be the set of rectangles in the same
bag of Ri, and, for an arbitrary set of rectangles R′ ⊆ R, let y(R′) =

∑
i∈R′ yi.

For two overlapping, distinct rectangles Ri and Rj , we say that they corner-
intersect, and write Ri ⊗Rj , if one rectangle contains at least one corner of the
other rectangle. Otherwise they cross. For an arbitrary set R′ ⊆ R and rectangle
Ri ∈ R, de�ne the resistance η as:

η(Ri,R′) =
∑

Rj∈R′\B(Ri),
Ri⊗Rj

yj +
∑

Rj∈R′∩B(Ri)\{Ri}

yj

Let G1 and G2 be two undirected graphs with vertex set R constructed as
follows: if two distinct rectangles Ri and Rj are incompatible (i.e., they overlap
or are in the same bag), then the edge (Ri, Rj) is added to G1 if Ri ⊗ Rj or if
they are in the same bag, otherwise the edge (Ri, Rj) is added to G2. Of course,
a subset I ⊆ R is a feasible solution if and only if it induces an independent set
of nodes in both the graphs simultaneously.

Our approximation algorithm works as follows. First, a fractional optimum
solution y of LPbagMISR is found. Then a permutation Π of R is computed
in the following manner: given the �rst i rectangles Πi = {π1, . . . , πi} in the
permutation, the (i+ 1)th element πi+1 (breaking ties arbitrarily) is:

πi+1 = arg min
Rj∈R\Πi

η(Rj ,R \Πi)

11 For our goals, it is convenient to consider two rectangles as overlapping i� they
overlap on a positive value area. In particular, overlapping on rectangle boundaries
is allowed.

9

We next compute a candidate set C and an independent set I ⊆ C ofG1. Initially,
C and I are empty. Then, the members of the permutation are scanned in reverse
order: at iteration k, the rectangle πn−(k−1) is added to C independently with
probability y(πn−(k−1))/10. If πn−(k−1) is added to C and I ∪ {πn−(k−1)} is an
independent set in G1, then πn−(k−1) is also added to I.

Note that I might not be an independent set due to crossing intersections. Let
∆ be the maximum clique-size of the rectangles in G2[I], that is, the maximum
number of rectangle overlapping on the same point. Since the rectangles in I
only have crossing intersections, G2[I] can be colored in polynomial time using
∆ colors as shown in [3]. The algorithm then returns the color subclass I ′ of I
that has the largest total weight. Clearly, I ′ is an independent set in both G1

and G2, and thus it is a feasible solution. We can bound the approximation ratio
similarly to [11].

Lemma 4. There is an expected O(log n/ log log n) approximation for bagMISR.

Approximating bagUFP. Our algorithm works as follows. We �rst compute
an approximate solution APXsmall associated to small tasks Tsmall = T \Tlarge
using the algorithm in [10]. We recall that this algorithm computes a constant
approximation of the optimal fractional solution of LPbagUFP restricted to small
tasks [10, Lemma 1]. Next we focus on large tasks, and on the corresponding
set of top-drawn rectangles R. We consider the bagMISR instance induced by
R. We compute a solution R′ for this instance using the algorithm from Lemma
4. Let APXlarge be the tasks corresponding to R′ (observe that APXlarge is
a feasible bagUFP solution). We �nally return the best solution APX between
APXsmall and APXlarge.

Proof. (of Theorem 1) Consider the above algorithm. We prove that APX is
a O(log n/ log log n) approximation with respect to the cost opt of the optimal
fractional solution x to LPbagUFP+ . Let xsmall be the restriction of x to small
tasks, and optsmal be the corresponding weight. We de�ne xlarge and optlarge

analogously for large tasks.
If optsmall ≥ opt/2, then APXsmall has the desired properties by [10]. Indeed,

xsmall if a feasible solution to LPbagUFP .
Otherwise, let ylarge = xlarge/4. Observe that ylarge is a feasible solution for

LPbagMISR. Therefore, APXlarge provides a O(log n/ log log n) approximation
of the weight of ylarge (hence of optlarge). The claim follows. ut

4 A O(1)-Approximation for Uniform Pro�ts

In this section we present our O(1) approximation for bagUFP with uniform
weights, which also upper bounds the integrality gap of LPbagUFP+ in the same
case. By scaling, we can assume w.l.o.g. that weights are exactly one.

By the same argument as in the proof of Theorem 1, it is su�cient to provide
a O(1) approximation for the (uniform-weight) bagMISR instance induced by
the top-drawn rectangles R corresponding to large tasks. We use as a black box

10

the following result proved (implicitly) in [1]. We recall that in the Maximum
Independent Set of Intervals problem (MISI) we are given a collection I of inter-
vals along a line, each one with an associated weight, and our goal is to compute
a maximum weight subset of intervals I ′ so that the intervals in I ′ are pairwise
non-overlapping. By bagMISI we denote the natural generalization of MISI with
bag constraints. We let LPMISI be the standard LP for MISI, which is de�ned
analogously to LPMISR.

Lemma 5. Let R′ be a set of top-drawn rectangles corresponding to a subset
of large tasks in an UFP instance, and let Rmax be any maximal indepen-
dent set of rectangles in R′. There is a polynomial-time algorithm that com-
putes up to 10 points Pi in the plane for each Ri ∈ Rmax, and four subsets
Rpoint,Rtop,Rleft,Rright ⊆ R′ that cover R′ so that:

1. Rpoint = {Ri ∈ R′ : Ri ∩ P 6= ∅} with P = ∪Ri∈Rmax
Pi.

2. For each x ∈ {top, left, right}, there exists a bijection between Rx and a
collection Ix of intervals along a line, so that the corresponding set of feasible
fractional solutions to LPMISR and LPMISI , respectively, is the same.

Our approximation algorithm for uniform-weight bagMISR works as follows.
We compute any maximal feasible solution APXmax for the bagMISR instance
induced by R. Consider the rectangles Rbag ⊆ R \ APXmax such that at least
one (indeed, precisely one) task in the same bag is contained in APXmax.

We apply the algorithm from Lemma 5 with Rmax = APXmax and R′ =
R\Rbag 12. This way we obtain the sets Rpoint,Rtop,Rleft,Rright. For any x ∈
{top, left, right}, we consider the instance of (uniform weight) bagMISI induced
by Ix (where the bags are de�ned by the corresponding bijection). We apply the
LP-based 2-approximation algorithm for bagMISI in [6] to this instance, hence
obtaining an approximate solution APXx. Finally, we output the best solution
APX among the solutions APXmax, APXtop, APXleft, and APXright.

Lemma 6. The above algorithm is a 17 approximation for the bagMISR in-
stances induced by large tasks of a bagUFP instance.

Proof. Let y be the optimal fractional solution to LPbagMISR with weight opt.
For x ∈ {top, left, right, bag, point}, let yx be the restriction of y to rectangles
Rx, and let optx be the corresponding fractional weight.

Suppose that optx ≥ 2opt/17 for some x ∈ {top, left, right}. Since yx is
feasible for LPbagMISI on intervals Ix, then |APXx| ≥ optx/2 ≥ opt/17.

Suppose next that optbag ≥ opt/17. Let Bj be a bag corresponding to some
task i ∈ APXmax. The total weight in ybag for this bag is at most 1 by the bag
constraints. Therefore |APXmax| ≥ optbag ≥ opt/17.

Finally, assume optpoint ≥ 10opt/17. Next let Rp ⊆ Rpoint be the rectangles
containing some point p ∈ Pi for some rectangle Ri ∈ APXmax. The optimal

12 Observe that, by construction, APXmax is a maximal independent set w.r.t R′.
This might not be the case w.r.t. R since bag constraints might prevent some non-
overlapping rectangle to be included in the maximal solution.

11

fractional weight associated to Rp is at most 1 due to the LP constraints. There-
fore, optpoint ≤

∑
Ri∈APXmax

∑
p∈Pi

1 ≤ 10
∑
Ri∈APXmax

1 = 10|APXmax|.
Thus |APXmax| ≥ optpoint/10 ≥ opt/17. ut

Theorem 2 follows from Lemma 6 and the above discussion.

Acknowledgements. The authors wish to thank Andreas Wiese for very help-
ful discussions about UFP and related problems.

References

1. A. Anagnostopoulos, F. Grandoni, S. Leonardi, and A. Wiese. Constant integrality
gap LP formulations of unsplittable �ow on a path. In IPCO, pages 25�36, 2013.

2. A. Anagnostopoulos, F. Grandoni, S. Leonardi, and A. Wiese. A mazing 2+ε
approximation for unsplittable �ow on a path. In SODA, pages 26�41, 2014.

3. E. Asplund and B. Grünbaum. On a coloring problem. Math. Scand, 8:181�188,
1960.

4. N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A quasi-PTAS for un-
splittable �ow on line graphs. In STOC, pages 721�729, 2006.

5. N. Bansal, Z. Friggstad, R. Khandekar, and R. Salavatipour. A logarithmic ap-
proximation for unsplittable �ow on line graphs. In SODA, pages 702�709, 2009.

6. A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of
multiple machines in real-time scheduling. SIAM J. Comput., 31(2):331�352, 2001.

7. J. Batra, N. Garg, A. Kumar, T. Mömke, and A. Wiese. New approximation
schemes for unsplittable �ow on a path. In SODA, pages 47�58, 2015.

8. P. Bonsma, J. Schulz, and A. Wiese. A constant factor approximation algorithm
for unsplittable �ow on paths. In FOCS, pages 47�56, 2011.

9. G. Calinescu, A. Chakrabarti, H. Karlo�, and Y. Rabani. Improved approximation
algorithms for resource allocation. In IPCO, pages 401�414, 2002.

10. V. T. Chakaravarthy, A. R. Choudhury, S. Gupta, S. Roy, and Y. Sabharwal.
Improved algorithms for resource allocation under varying capacity. In ESA, pages
222�234, 2014.

11. T. M. Chan and S. Har-Peled. Approximation algorithms for maximum indepen-
dent set of pseudo-disks. Discrete Comput. Geom., 48(2):373�392, 2012.

12. C. Chekuri, A. Ene, and N. Korula. Unsplittable �ow in paths and trees and
column-restricted packing integer programs. In APPROX, pages 42�55. 2009.

13. C. Chekuri, M. Mydlarz, and F. Shepherd. Multicommodity demand �ow in a tree
and packing integer programs. ACM Transactions on Algorithms, 3, 2007.

14. A. Darmann, U. Pferschy, and J. Schauer. Resource allocation with time intervals.
Theoretical Computer Science, 411:4217�4234, 2010.

15. F. Grandoni and T. Rothvoÿ. Pricing on paths: A PTAS for the highway problem.
In SODA, pages 675�684, 2011.

16. F. Spieksma. On the approximability of an interval scheduling problem. Journal
of Scheduling, 2(5):215�227, 1999.

12

A Omitted Proofs

e

{

{

{

{

t2

t4

t1

t3

(a)

e

t1

t2

t3

t4

(b)

Fig. 1: Intuitive description of the grouping, removal, and rounding of tasks on
the right of e from Lemma 1. (a) Tasks are grouped in subsequences of size 2,
and tasks in the last two subsequences (gray in the picture) are removed. (b)
The remaining tasks are extended to the right, and their demand is rounded up.
The original capacity pro�le is shown dashed.

Proof. (of Lemma 1) Let us sort the tasks of S in increasing order of their
rightmost edge, and then partition them in 1/ε2 subsequences of size either
bε2|S|c or dε2|S|e. Let us remove from S all the tasks of the last 2/ε subsequences
(corresponding to the tasks with more edges to the right of e). We next expand
each task path to the right until it reaches the rightmost edge of the rightmost
ending task in its subsequence. We perform a symmetric process, considering the
edges to the left of e. Finally, we round up each task demand to (1+ ε)D, where
D = (1 + ε)a (see Figure 1). Consider the resulting set R of rounded tasks, and
let r be the corresponding total demand. We claim that the pair {r,R} satis�es
the claim. Trivially r satis�es (2) and (3). Property (4) holds since

w(R) ≥ w(S)− 4

ε
(1 + ε)W dε2|S|e ≥ w(S)− 4ε(1 + ε)(|S|+ 1

ε2
) ·W

≥ w(S)− 8ε(1 + ε) · |S|W ≥ w(S) · (1− 16ε).

It remains to show (1). Consider any edge f to the right of e (e included) spanned
by the rounded tasks R. Recall that rf is the total demand of R on f , and let
uf be the total demand of S on the same edge. We have to show that uf ≥ rf .
Let q ≤ 1

ε2 be the number of right subsequences in S whose tasks all contain f .
W.r.t. uf , in rf we have an increase of the demand by at most dε2|S|e(1 + ε)D
due the the expansion of tasks to the right (and to the increase of the demands).
Furthermore, we have an increase of at most qdε2|S|eεD ≤ 1

εdε
2|S|eD due to the

increase of the demands. On the other hand, we are decreasing the demand by

13

e1 e2

Fig. 2: The classi�cation of jobs for a given interval I with γ = 2. Here F (I) =
{e1, e2}. Each colored segment corresponds to some task, and tasks of the same
color correspond to the same job. The solid green job j is good, while the dashed
red job is bad. The dotted blue job is considered in lower levels of the recursion.

at least 2
εbε

2|S|cD due to the removal of the rightmost subsequences. Altogether

uf − rf ≥
2

ε
bε2|S|cD − dε2|S|e(1 + ε)D − 1

ε
dε2|S|eD

≥ 2

ε
bε2|S|cD − (bε2|S|c+ 1)(

1

ε
+ 1 + ε)D

= (
1

ε
− 1− ε)bε2|S|cD − (

1

ε
+ 1 + ε)D ≥ 0

In the last inequality above we used the fact that |S| ≥ 2
ε3 is su�ciently large.

For any edge f to the left of e we can apply a similar argument, where we replace
S with the tasks S′ that survive after the removal of the rightmost subsequences.
Note that |S′| ≥ |S| − 2

εdε
2|S|e ≥ 1

ε3 , hence |S
′| is su�ciently large also in this

case. ut

Proof. (of Lemma 4) We �rst prove that the expected total weight of I is a
constant fraction of the fractional optimal cost opt. Let us focus on a given πi.
Recall that πi is independently added to the candidate set C with probability
yπi/10. Let K := R\Πi−1 be the rectangles considered before πi, and let H ⊆ K
be the rectangles that corner intersect with πi or are in the same bag. One has

Pr[πi ∈ I |πi ∈ C] ≥
∏

Rj∈H

(
1− yj

10

)
≥ 1−

∑

Rj∈H

yj
10

= 1− y(H)
10

.

Observe that y(H) = η(πi,K). We will show that η(πi,K) ≤ 5. It follows that
the expected weight of I is at least opt/20. One has

∑

Rk∈K
ykη(Rk,K) ≤

∑

Rk∈K
yk

∑

Rj∈K,
Rk⊗Rj

yj +
∑

Rk∈K
yk

∑

Rj∈B(Rk)

yj .

Because of the bag constraints,
∑

Rk∈K
yk

∑

Rj∈B(Rk)

yj ≤
∑

Rk∈K
yk = y(K).

14

Let C(K) = {(p, k, j) | Rk, Rj ∈ K, k 6= j, and p ∈ Rj is a corner of Rk}. We
observe that:

∑

Rk∈K
yk

∑

Rj∈K,
Rk⊗Rj

yj ≤
∑

(p,k,j)∈C(K)

ykyj =
∑

Rk∈K
yk

∑

j:(p,k,j)∈C(K)

yj ≤ 4
∑

Rk∈K
yk = 4y(K).

The �rst inequality above holds since, for each pair of rectangles Rk, Rj ∈ K
such that Rk⊗Rj , the term ykyj appears in the left hand side exactly twice and
in the right hand side at least twice13. The second inequality follows from the
feasibility of y and the fact that there are four corner points for each rectangle.

Thus, we have proved:

∑

Rk∈K
ykη(Rk,K) ≤ 4y(K) + y(K) = 5y(K)⇒

∑

Rk∈K

yk
y(K)

η(Rk,K) ≤ 5.

Since the left hand side of the last inequality is a convex combination of the
elements of the set {η(Rk,K) : Rk ∈ K}, it follows that

η(πi,K) = min
Rk ∈K

η(Rk,K) ≤ 5.

Now we show that the expected value of ∆ is O(log n/ log log n). Let us
�x a point p ∈ P. The number depth(p, I) of rectangles in I containing p is
upper bounded by the sum Sp =

∑
Ri3p Yi, where each Yi is an independent 0�1

random variable that is 1 with probability yi/10. Observe that the mean of Sp
is µ =

∑
Ri3p

yi
10 ≤

1
10 < 1. Thus, by Cherno� bound:

Pr[depth(p, I) > (1 + δ)µ] <

(
eδ

(1 + δ)
1+δ

)µ

for any δ > 0. By choosing δ such that t = (1 + δ)µ, it holds that:

Pr[depth(p, I) > t] < (e/t)
t

Since |P| ∈ O(n2) and∆ = maxp∈P depth(p, I), by the union bound it follows

that Pr[∆ > t] ∈ O((e/t)
t
n2), which is at most 1/n for t = Θ(log n/ log log n).

Of course, it holds that
∑
Ri∈I′ wi ≥

1
∆

∑
Ri∈I wi. Thus:

E

[∑

Ri∈I′
wi

]
≥
(
1− 1

n

)
Ω

(
log log n

log n

)
E

[∑

Ri∈I
wi

]
≥ Ω

(
log log n

log n

)
opt

ut

13 More precisely, four times if one rectangle contains all the 4 corners of the other one,
and otherwise twice.

15

